Future FNAL Neutrino Scattering Experiments

Deborah Harris Kevin McFarland FLRP Meeting October 17, 2003

Why?

 On our roadmap to understanding neutrino masses and mixings...

the physics of neutrino scattering is an afterthought, at best

 barring an enormous surprise, this will never drive the program

Why? (cont'd)

- "Because it's there." A.k.a., exploration
 - the high rates required by oscillation experiments imply orders(!) of magnitude increases in flux at near detectors
- Because it's our bread and butter
 - Great thesis topics for students
 - Engineering for oscillation experiments
- Because it unifies communities
 - think of JLab with neutrinos
 - NP/HEP collaborations

What?

- Near detectors associated with oscillation experiments
 - direct measurements of fluxes, backgrounds
- QCD and Nucleon Structure
 - for its own sake
 - for cross-section model-building to for oscillation measurements
- More speculative topics
 - BSM Neutrino Interactions
 - Rare Processes

How?

- Current FNAL beams
 - MiniBooNE, NuMI
- Future Beams that could be built
 - Conventional beams
 - Proton driver, Main Injector, TeVatron FT(?)
 - Neutrino Factory Beams
- Planned and Future Detectors
 - MiniBooNE
 - MINOS Near Detector
 - MINERvA, FineSe, Off-Axis Near Detector
 - Light (H₂, D₂) targets, v Factory near detectors

Missing from this talk

- Ideally, pull together all these topics into a coherent diagram
 - beam on one axis
 - detector technology on another?
 - speculative timelines?

Example: Roadmap for QCD and Nucleon Structure

Neutrino crosssections vs. Energy

- Quasi-Elastic / Elastic
 ν_μn→μ⁻p (x =1, W=M_p)
- Resonance
 ν_μp→μ⁻πp (low Q², W)
- Coherent $v_{\mu}N\rightarrow \mu^-\pi^+(\nu\pi^0)N$
- Deep Inelastic
 ν_μN→μ⁻X (high Q², W)

Example: Roadmap for QCD and Nucleon Structure

- Low Energies (few GeV or below)
 - (Quasi)elastic processes
 - Coherent pion production
 - Modeling the "Resonance Region"
- High Energies (DIS). N.b., need vbar
 - Nuclear Effects
 - Resolving puzzles in high x PDFs
 - Strange sea
- Add on high intensities (neutrino factory?)
 - Polarized targets and flavor resolved spin

Elastic Scattering

$$\frac{d\sigma(vN \to vN)}{dQ^2} \approx G_A^2$$

$$G_A(Q^2) = -\tau_z g_A(Q^2) + G_A^s(Q^2)$$

$$\tau_z = +1(p), -1(n)$$

$$G_A^s(Q^2 = 0) = \Delta s$$

$$\frac{d\sigma(vp \to vp)}{d\sigma(vn \to \mu p)} \approx f(G_A^2)$$

- By measuring elastic scattering at $Q^2=0$, correct for g_A using nuclear beta decay measurements, can extract Δs
- Complimentary to other techniques for measuring strange quark spin

Quasielastic Scattering

- At low Q², interest is testing nuclear effects measured in charged leptons and measuring "m_A"
 - "engineering"
- At high Q², however, there is effectively no knowledge of form factors

G. 6. The Q^2 distribution for selected quasielastic its. The smooth line shows the best fit for $M_A = 1.07$

- Vector form factors not well modeled
- If vector case is a guide, dipole approximation is wrong
- Complimentary to JLAB measurements

Coherent π^0 Production

Scatter from entire nucleus

$$\nu + A \rightarrow \nu + \pi^0 + A, \qquad \qquad \nu + A \rightarrow \mu^- + \pi^+ + A$$

- Adler's PCAC theorem: $\sigma(vA) \propto \sigma(\pi A)$ at Q²=0
- Important background for oscillation experiments
- Signature is outgoing π^0 or π^+ at 0°
- Strategy:
 - Measure CC process
 well to tune models
 - Test models with NC measurements

Resonance Production

- Models now in favor (Bodek-Yang) use Bloom-Gilman duality
- Relate resonance region to QPM limit
 - "DIS with wiggles", tested now only in charged lepton NC
 - Does Bodek-Yang work in detail in neutrino scattering

$$v_{\mu}p \to \mu^{-}\Delta^{++} \to \mu^{-}p\pi^{+}$$

$$v_{\mu}n \to \mu^{-}\Delta^{+} \to \mu^{-}n\pi^{+}$$

$$v_{\mu}n \to \mu^{-}\Delta^{+} \to \mu^{-}p\pi^{0}$$

$$v_{\mu}p \to v_{\mu}\Delta^{+} \to v_{\mu}p\pi^{0}$$

Also relevant background for oscillation experiments

Final State Effects

- Oscillation "engineering": at low energy, energy resolution is sensitive to final state
 - Particularly important for MINOS
 - How many pions get produced?
 How many get absorbed as function of A?

PDFs in Deep Inelastic Scattering

High x parton distribution functions

Need v and vbar running for this to separate

flavors

$$\frac{d\sigma^{vp}}{dxdy} = \frac{G_F^2 s}{\pi} \left(x d(x) + x u(x) (1-y)^2 \right)$$

$$\frac{d\sigma^{\bar{v}p}}{dxdy} = \frac{G_F^2 s}{\pi} \left(x d(x) + x u(x) (1-y)^2 \right)$$

- Strange sea
 - At higher energies, neutrino CC charm production is best probe of strange sea
 - e.g., NuTeV/CCFR dimuons

Nuclear Effects in DIS

- Well measured effects in charged-lepton DIS
 - Is the same in neutrino DIS?

H₂ and D₂ Targets

- Need High Intensity (high energy beams)
- Need v and vbar
- Isospin Violation finally could be measured
 - experimentally viable explanation for NuTeV
- Improved Lever Arm for Nuclear Effects
- Improve measurements of high x without complication of Fermi

Polarized H₂ and D₂ Targets

- Need very intense beam here! (v factory, High E)
- Flavor-dependent Spin Structure Functions

- •Spin Content of Nucleon:
- Look for Isospin violations
- Find spin contribution from strange quarks

Rare Processes: v-e scattering

- Powerful electroweak test
 - No QCD uncertainties
 - Point-like target
 - Well-predicted σ

$$\sigma_{TOT} = \frac{G_F^2 s}{\pi} \left(\frac{1}{4} - \sin^2 \theta_W + \frac{4}{3} \sin^4 \theta_W \right)$$

 Above 11 GeV, can normalize to CC process

$$\sigma_{TOT} = \frac{G_F^2(s - m_{\mu}^2)}{\pi}$$

 Need detector with lots of background rejection for single-electron signal

BSM Physics

- Large neutrino magnetic moment
 - do high fluxes at high energy allow improvements over what can do at reactor (this is not clear to me, although it's been discussed)
- Spin-flavor precession
 - rare SB appearance processes
 (I'm unaware of any comprehensive studies)
- Your kooky idea here

Available or Near Future Beamlines

- NuMI
- Booster Neutrino Beamline
- Future Booster or MI fed lines

FNAL Booster Neutrino Beamline

FINeSE at FNAL Booster

The Beam

- New hall 100m from Target on-axis
- <E_√ >~0.9 GeV
- 3×10⁴/ton/3E20 POT

(B. Fleming, NP02 talk)

NuMI Beamline at Fermilab

Example: Rates at NUMI Near Hall

- If 2.5 x 10²⁰ pot per year of NuMI running...
- Low E-configuration:
 - E_{peak} = 3.0 GeV, $\langle E_{v} \rangle$ = 10.2 GeV, rate = 200 kevents/ton year.
- Med E-configuration:
 - E_{peak} = 7.0 GeV, $\langle E_{v} \rangle$ = 8.5 GeV, rate = 675 kevents/ton year
- High E-configuration:
 - E_{peak} = 12.0 GeV, $\langle E_{v} \rangle$ = 13.5 GeV, rate = 1575 k events/ton year

Easy to go 5-15 meters Off-Axis

 At NUMI, detector can be moved around to vary energy without tunneling

Not Your Grandfather's Neutrino Detector

- Fluxes are high so masses can be low!
- Identification and separation of exclusive final states
 - Quasi-elastic $\nu_u n \rightarrow \mu^- p$, $\nu_e n \rightarrow e^- p$ observe recoil protons
 - Implies nearly fully active wean ourselves from sampling detectors
 - Single π^0 , π^{\pm} final states reconstruct π^0
 - Multi-particle final-state resonances
- Reasonable EM and hadronic calorimetry for DIS
 - Accurate measurements of x_{B_i} , Q^2 and W.
- Multiple targets of different nuclei

High Rate Physics at v Factory

Flux (arb units)

3000	— 10 GeV μ	in the same of the
2500	20 GeV µ	and the same of th
2000	···· 50 GeV μ	
1500	,	
1000	11	
500	N	ν_{μ}
0	10 20	30 40 5
200		v Energy (CeV)

Target	Thickness	Evts/10 ²⁰ μ
Liquid H ₂	100cm	12.1M
Liquid D ₂	100cm	29.0M
Solid HD	50cm	9.3M
С	5.3cm	20.7M
Fe	2.3cm	31.6M

Events for a 40cm Radius target... Surround with low mass Calorimetry...

Summary

- Important Physics from Low to High Energies
 - We saw, for example, how a program of QCD studies could develop with time
- Opportunistic: FNAL v beams provide a new facility. We should exploit it.
 - "JLab" of v. Medium energy users come to FNAL!
 - Intersection of particle and nuclear physics
- Is there new physics to be found?
- Oscillation Physics needs these measurements

Draft(y) Recommendation

- "Existing and planned neutrino beams at Fermilab provide unprecedented new opportunities in high rate neutrino physics.
- A modest investment in new near-source detectors will be repaid handsomely in new physics from FNAL and new physicists attracted to FNAL.
- We encourage cooperation between the HEP and NP communities in planning the exploitation of this resource."

other slides

what's missing

- sense of organization of topics
- rah rah nuclear-particle
- needs better outline
- sections that need work:
 - rare processes, charm physics, polarized, physics of QE

Conceptual Design, cont'd

- Scintillator (CH) strips with fiber readout. Fully Active
 - $(\lambda_{int} = 80 \text{ cm}, X_0 = 44 \text{ cm})$
- Add nuclear material with 2 cm thick planes of C, Fe and Pb.
 - 11 planes C = 1.0 ton (+Scintillator)
 - 3 planes Fe = 1.0 ton (+MINOS)
 - 2 planes Pb = 1.0 ton
- Muon catcher: ideally magnetized μ identifier / spectrometer
 - MINOS near detector is great for this!
- Use side detectors for low-energy μ-ID and shower energy.

Conceptual Design for Minerva

Conceptual Design for Minerva

Kinematic Coverage at v Factory

- High x region, where nuclear dependence effects are most pronounced
- Low Q², where changes from non-PT to PT regime are important

